A Short-term Wind Power Prediction Framework based on Two-layer Decomposition and the Combination of Ensemble Model and Deep Network

نویسندگان

چکیده

The time series of wind power is influenced by many external factors, showing strong volatility and randomness. Aiming at the problem low prediction accuracy series, this paper proposes a short-term framework based on two-layer decomposition combination ensemble model deep network, which composed complete empirical mode (CEEMD), sample entropy (SE), stacking ensemble, linear regression (LR), variational (VMD), long short term memory (LSTM) multi-layer perceptron (MLP). Firstly, CEEMD used to decompose into different modes then SE for reconstruction. Secondly, models are applied predict reconstruction components select optimal model. Subsequently, VMD partially decomposed combined LSTM established. Finally, in order further improve accuracy, MLP correct error corrected superimposed with results other obtain final predicted value. simulation show that effectiveness superior traditional improved effectively.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

the effects of keyword and context methods on pronunciation and receptive/ productive vocabulary of low-intermediate iranian efl learners: short-term and long-term memory in focus

از گذشته تا کنون، تحقیقات بسیاری صورت گرفته است که همگی به گونه ای بر مثمر ثمر بودن استفاده از استراتژی های یادگیری لغت در یک زبان بیگانه اذعان داشته اند. این تحقیق به بررسی تاثیر دو روش مختلف آموزش واژگان انگلیسی (کلیدی و بافتی) بر تلفظ و دانش لغوی فراگیران ایرانی زیر متوسط زبان انگلیسی و بر ماندگاری آن در حافظه می پردازد. به این منظور، تعداد شصت نفر از زبان آموزان ایرانی هشت تا چهارده ساله با...

15 صفحه اول

Short term electric load prediction based on deep neural network and wavelet transform and input selection

Electricity demand forecasting is one of the most important factors in the planning, design, and operation of competitive electrical systems. However, most of the load forecasting methods are not accurate. Therefore, in order to increase the accuracy of the short-term electrical load forecast, this paper proposes a hybrid method for predicting electric load based on a deep neural network with a...

متن کامل

the effect of lexical and grammatical collocation instruction through input flooding versus awareness raising on short-term and delayed retention as well a active use

this study attempted to explore if teaching english collocations through two different modes of awareness-raising and input flooding has any possible differential effect on immediate retention as well as retention in a delayed assessment. it also compared the possible differential effect of teaching english collocations implicitly and explicitly on actively using the items in writing. m...

15 صفحه اول

a case study of the two translators of the holy quran: tahereh saffarzadeh and laleh bakhtiar

بطورکلی، کتاب های مقدسی همچون قران کریم را خوانندگان میتوان مطابق با پیش زمینه های مختلفی که درند درک کنند. محقق تلاش کرده نقش پیش زمینه اجتماعی-فرهنگی را روی ایدئولوژی های مترجمین زن و در نتیجه تاثیراتش را روی خواندن و ترجمه آیات قرآن کریم بررسی کند و ببیند که آیا تفاوت های واژگانی عمده ای میان این مترجمین وجود دارد یا نه. به این منظور، ترجمه 24 آیه از آیات قرآن کریم مورد بررسی مقایسه ای قرار ...

15 صفحه اول

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: E3S web of conferences

سال: 2022

ISSN: ['2555-0403', '2267-1242']

DOI: https://doi.org/10.1051/e3sconf/202235801040